AWS Discovery Day: Machine Learning Basics
Learn how you can unlock new insights and value for your business using machine learning.
Description
Are you interested in machine learning, but not sure where to start? Join us for this session with an AWS expert and demystify the basics. Using real-world examples, you’ll learn about important concepts, terminology, and the phases of a machine learning pipeline.
Agenda and topics covered
During this event, you will learn:
- What is Machine Learning?
- What is the machine learning pipeline, and what are its phases?
- What is the difference between supervised and unsupervised learning?
- What is reinforcement learning?
- What is deep learning?
Audience
This event is intended for:
- Developers
- Solution architects
- Data engineers
Individuals interested in building solutions with machine learning - no machine learning experience required!
Next Steps
We recommend that attendees of this event continue learning with these:
- Courses
- Deep Learning on AWS
- MLOps Engineering on AWS
- Practical Data Science with Amazon SageMaker
- The Machine Learning Pipeline on AWS
- Resources
AWS Ramp-Up Guide: Machine Learning
Curriculum
Section 1: Machine learning basics
- Classical programming vs. machine learning approach
- What is a model?
- Algorithm features, weights, and outputs
- Machine learning algorithm categories
- Supervised algorithms
- Unsupervised algorithms
- Reinforcement learning
Section 2: What is deep learning?
- How does deep learning work?
- How deep learning is different
Section 3: The Machine Learning Pipeline
- Overview
- Business problem
- Data collection and integration
- Data processing and visualization
- Feature engineering
- Model training and tuning
- Model evaluation
- Model deployment
Section 4: What are my next steps?
- Resources to continue learning